Turing Tumble Community

Challenge: how high can you count?

Using just board and pieces as it ships, release 1 blue, 1 red, 2 blue, 1 red, 3 blue, 1 red, 4 blue, 1 red, … n blue, 1 red. So output as it appears on output ramp looks like:

. . . . bbbbrbbbrbbrb

What is the highest that you can count to in this manner?

Whatever your solution, it can’t count arbitrarily high - since a simple argument shows that you cannot continue the pattern indefinitely without more and more pieces and board space.
But, do you have a structure and approach that is systematic enough that you could count arbitrarily high if you had more parts and more board space?

Addendum: I was able to count to 3 here. But after getting to three, it continues with some extra balls before repeating, so the repeating pattern looks like this: rbbbrbbrbbbrbbrb. It would be nice if I could repeat just the part that counts to three (i.e., rbbbrbbrb). Can anybody get a count up to four?

3 Likes

This will count to 4 and repeat itself nicely (pull on the blue lever). This technique can be used to count to arbitrary power of 2 given sufficiently large board.

I’ve looked at your solution but I have to say, I don’t know how to extend your structure to higher powers of 2. Do you mind elaborating on that?

This one counts to 8 (but it needs a large board). It is also structured so it can be grown indefinitely (a more compact version is possible without structuring it this way).

1 Like

Ah yeah, I see it now, very cool. Is it feasible to modify this structure so it loops after, say, counting up to 6?

Terminating it when some value is reached is easy (just count blue balls). Making it loop with non-power-of-2 period is harder, some sort of reset functionality has to be added

Very nice!! I imagine this could also be “inverted” to create a “count-down” timer as in “10, 9, 8, …,2, 1, blast-off!”

Actually, by using two blue balls per count, it is possible to go to 8 (and keep looping) on a standard board (but more pieces are needed than a single set contains). It’s a nice puzzle to get to 8. Click here if you want to see a solution.

1 Like

This is a nice challenge! I managed to count up to six on a normal-sized board with just the normal set of parts. The difficulty was not so much the logic, but getting to a set-up that fits. My solution is not periodic. After reaching six the sequence terminates. So the result is bbbbbbrbbbbbrbbbbrbbbrbbrb

Here’s my solution.

1 Like

I got up to four with only 27 parts and no gear bits using @Alf’s technique. The operation is simple: the blue balls run a two-bit down-counter which triggers a red ball when it underflows. Each red ball then sets the counter to the appropriate value and then triggers a blue ball, thus repeating the cycle until the fourth red ball is intercepted.

Screen Shot 2020-08-04 at 8.07.08 PM
jstumble
Tumble Together

Or, if you must have the fourth red ball as part of the output, that’s a 29-part solution:

Screen Shot 2020-08-04 at 8.07.30 PM
jstumble
Tumble Together

I don’t think this technique is extensible as far the challenge statement goes, because if you were to use this technique with an n-bit blue counter, there would be n-1 red balls between each group of blue balls in the output.

Hi Lenny, In the limits of the BOX : This one of the solution to count to 5 :

image

image

1 Like

IMG_4251

I think this 16,384. Only caveats are 1) the purple ones bounce back a little so need to be fiddled with and 2) you need one red ball on the right side for every 1024 blue balls being counted on the left side.

2025